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Improving biodiversity assessment 
via unsupervised separation of 
biological sounds from long-
duration recordings
Tzu-Hao Lin   1, Shih-Hua Fang2 & Yu Tsao1

Investigating the dynamics of biodiversity via passive acoustic monitoring is a challenging task, owing 
to the difficulty of identifying different animal vocalizations. Several indices have been proposed to 
measure acoustic complexity and to predict biodiversity. Although these indices perform well under 
low-noise conditions, they may be biased when environmental and anthropogenic noises are involved. 
In this paper, we propose a periodicity coded non-negative matrix factorization (PC-NMF) for separating 
different sound sources from a spectrogram of long-term recordings. The PC-NMF first decomposes a 
spectrogram into two matrices: spectral basis matrix and encoding matrix. Next, on the basis of the 
periodicity of the encoding information, the spectral bases belonging to the same source are grouped 
together. Finally, distinct sources are reconstructed on the basis of the cluster of the basis matrix and 
the corresponding encoding information, and the noise components are then removed to facilitate 
more accurate monitoring of biological sounds. Our results show that the PC-NMF precisely enhances 
biological choruses, effectively suppressing environmental and anthropogenic noises in marine and 
terrestrial recordings without a need for training data. The results may improve behaviour assessment 
of calling animals and facilitate the investigation of the interactions between different sound sources 
within an ecosystem.

Evaluating the effects of environmental change and human development on biodiversity is a critical task in con-
servation management1, 2. Assessment of biodiversity requires a significant amount of resources to collect samples 
and investigate the presence of animals. Owing to limited resources, the temporal dynamics of biodiversity is usu-
ally difficult to measure, especially in remote areas where surveys are conducted seasonally or annually. Therefore, 
time series information of biodiversity is a much more challenging area of study than geographical information3.

In recent years, passive acoustics has become a popular method for monitoring the behaviour of wildlife. By 
using autonomous sound recorders, vocalizations of calling animals can be collected with long durations in var-
ious environments, such as deep waters and tropical rain forests4–6. Despite achieving the collection of terabytes 
of data, difficulties remain in identifying all calling animals, owing to the complexity of animal vocal behaviours. 
Instead of trying to identify all calling species, several ecoacoustics indices have been developed to evaluate the 
biodiversity changes on the basis of acoustic data. To name just a few, these indices include the acoustic entropy 
index7, acoustic diversity index8, acoustic complexity index9, and acoustic richness10. Although the measurements 
vary among indices, all of these indices intend to quantify the spectral and temporal complexity of biological 
sounds.

Ecoacoustics indices have been used to investigate the composition of calling animals, interactions among dif-
ferent sound sources and their relationships within their physical and biological environments11–13. Several stud-
ies have also successfully tested the correlations between ecoacoustics indices and local biodiversity in tropical 
forests, temperate forests, and coastal reef environments7, 10, 14. However, not all indices perform equally regarding 
the correlations of biodiversity changes. Some of the indices are sensitive to the environmental noise caused 
by the unique landscape characteristics and the presence of anthropogenic noise15. Therefore, the uncertainty 
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increases when ecoacoustics indices are used to investigate the spatial and temporal changes in biodiversity in 
noisy environments.

The uncertainty of ecoacoustics indices in noisy environments can be decreased if noise can be effectively 
suppressed before acoustical analysis. Various noise reduction (NR) methods have been developed in the field 
of acoustic signal processing and analysis. Among the NR methods, a notable class is the spectral restoration 
methods. The goal of the spectral restoration methods is to separate the noise-free signals from the given 
noise-corrupted ones in the spectral domain. Well-known spectral restoration approaches include spectral sub-
traction (SS)16 and the Wiener filter17, with their various extensions18, 19. Another group of spectral restoration 
methods is based on the statistical models of noise-free and noise-corrupted signals to derive a gain function, 
which is used to filter noise-corrupted input signals to obtain the noise-free counterparts. Notable examples 
include the minimum-mean-square-error (MMSE)20, maximum likelihood spectral amplitude estimator 
(MLSA)21, maximum a posteriori spectral amplitude (MAPA)22, and generalized maximum a posteriori spectral 
amplitude (GMAPA)23. The spectral restoration methods usually rely on a noise tracking scheme to calculate 
the statistics of noise components; effective noise tracking schemes include minimum statistics (MS) tracking24, 
minima controlled recursive averaging (MCRA)25, and improved MCRA (IMCRA)26. Although the conventional 
spectral restoration methods can provide satisfactory performance under most conditions, there is still room to 
further improve them for non-stationary noisy conditions. In field recordings, both environmental and anthro-
pogenic noises are usually non-stationary. Therefore, the conventional spectral restoration methods may not be 
sufficient for improving the performances of ecoacoustics indices.

More recently, the non-negative matrix factorization (NMF) algorithm has been adopted for noise reduction 
and shows promising performance in handling non-stationary noises27, 28. The NMF has been used to model the 
encoded information of an acoustic signal and noise in a noisy recording. By modelling the signal-related features 
and encoding matrix, the acoustic signal can be separated or enhanced from the noisy recordings29. Although the 
NMF achieves satisfactory performance in many acoustic noise reduction tasks, a major limitation to its appli-
cability is that a set of supervised training data must be prepared to achieve optimal performance. More specifi-
cally, pure signal sources must be collected in the offline phase to facilitate effective noise reduction in the online 
phase. Under real-world conditions, however, collecting pure signals may not always be possible. Therefore, the 
traditional supervised NMF method cannot be suitably used in the passive acoustic monitoring of biodiversity.

In this study, we sought to address the limitations of conventional supervised NMF noise reduction methods, 
and we propose a novel NMF with periodicity analysis (PC-NMF) for suppressing noises from spectrograms of 
long-duration recordings in an unsupervised manner. On the basis of the periodicity of encoded information, 
PC-NMF can separate multiple biological choruses and suppress noise signals. In the experiment, we first evalu-
ated the performance of PC-NMF on a set of simulated test data. For comparison, we also conducted experiments 
using supervised NMF and several well-known spectral restoration methods. Then, the PC-NMF was applied to 
real-world data collected in terrestrial and marine environments with varying noise levels. Finally, we discuss the 
potential application of PC-NMF in future research of ecoacoustics.

Results
Performance evaluation on the basis of simulation data.  To evaluate the performance of PC-NMF, 
we prepared three types of biological sounds (Fig. 1a), one type of transient broadband noise and one type of 
environmental noise (Fig. 1b), and a mixture of these five sources to use in our simulated long-term spectrogram 
(Fig. 1c). During the analysis, we first factorized the spectrogram into a basis matrix and an encoding matrix via 
NMF (Fig. 2). The basis matrix represented the spectral dictionary of the input spectrogram, and each sound 
source appeared to be composed of multiple bases. The encoding matrix described the occurring intensity of each 
basis along the time axis. It was obvious that some bases related to the three biological sounds displayed stronger 
periodicity than those related to noise sources (Fig. 2d). Therefore, we grouped the bases that shared similar 
periodicity by analysing the periodicity of the encoding matrix, and each group represented the bases of a distinct 
sound source. Finally, the biological chorus was reconstructed according to the bases with strong periodicity and 
the corresponding encoding information, and non-periodical noise was effectively suppressed.

We first quantitatively analysed the performance of PC-NMF on the basis of the spectral similarity metric, 
an index ranging from −1 to 1, to evaluate the precision of the noise reduction result of different methods. In a 
preliminary experiment, we tested the performances of PC-NMF with different basis numbers and iteration num-
bers using the simulated spectrogram. The results showed that the spectral similarity reached 0.78 and became 
saturated when the basis number was larger than 60. Notably, when a larger basis number was used, the compu-
tational power was accordingly increased. To strike a reasonable balance between performance and computation, 
we report only the results of using 60 basis numbers in the following results. However, we noted that the spectral 
similarity increased accordingly when the number of iterations increased from 80 to 200, whereas the perfor-
mance of the spectral similarity became saturated after 200 iterations. In the following discussions, we report the 
results for 200 iterations.

Next, we compared PC-NMF with the supervised NMF and several conventional spectral restoration meth-
ods, including MLSA, MAPA, and GMAPA. The results are presented in Fig. 3. From the results, we observed that 
the supervised NMF achieved the highest performance in separating biological sounds from the simulated spec-
trogram: when the training data of biological sounds and noise were given, the spectral similarity reached 0.95. 
However, the spectral similarity of PC-NMF reached 0.8 (Fig. 3). Although PC-NMF did not perform as well as 
the supervised NMF, it is still promising, because it provides a noise reduction performance when no supervised 
training data are given. Finally, the results in Fig. 3 show that the PC-NMF outperformed the conventional MLSA, 
MAPA, and GMAPA spectral restoration methods (no training data were used in these three methods).

Next, we sought to qualitatively evaluate the effectiveness of PC-NMF by using the simulated test data. 
Figure 4 shows the spectrograms processed by using GMAPA, MLSA, PC-NMF, and the supervised NMF in 
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(a)-(d), respectively. From the figure, it is clear that the conventional spectral restoration methods (GMAPA and 
MLSA) could not effectively discriminate the biological sounds and transient noises. Therefore, some parts of the 
biological sounds were distorted, and most of the transient noises were even magnified when the conventional NR 
methods were used. Next, in comparison with the results in Figs 1a and 4c, PC-NMF effectively suppressed the 
background noise while maintaining clear structures of the biological sounds. Finally, in comparing Fig. 4c and d, 
we found that the spectrogram generated by PC-NMF (in an unsupervised manner) approached that generated 
by the supervised NMF (which required pure training data).

Experimental results based on real-world data.  To evaluate the performance of PC-NMF for 
real-world data, we prepared four datasets collected from marine and terrestrial environments. In the real-world 
scenarios, we were not able to record pure biological sounds without any noise interference. Thus, it was impos-
sible to evaluate the performance with respect to spectral similarity (which would require pure sources as a refer-
ence). Instead, we measured the sound intensity in each time vector of the separated data as a quantitative index 
for assessing the performance. The sound intensity was normalized by dividing the intensity of each 5-minute 
recording fragment by the maximum intensity of the entire data.

The results are shown in Figs 5 and 6. As shown in the figures, we observed that the PC-NMF was capable 
of enhancing biological choruses with strong periodicity under different noise conditions. In shallow marine 
environments, the primary biological sound is the night-time fish chorus, as shown in both Figs 5 and 6. In both 
the pristine area and the river estuary near an industrial harbour, the signal-to-noise ratios of fish choruses were 
relatively low, owing to the presence of stationary environmental noise and transient shipping noise.

The conventional spectral restoration method (only MLSA results are displayed here, although MAPA and 
GMAPA showed similar trends) successfully removed stationary environmental noise, but it was inefficient in 
suppressing the transient broadband noise. By using the PC-NMF, we found that the fish choruses were con-
siderably enhanced for both recording locations (Figs 5, 6). In addition to the stationary environmental noise, 
PC-NMF showed a promising performance in suppressing the transient broadband noise. Similar performances 
were also achieved for the other two terrestrial recording locations (Supplementary Fig. S1–S2).

Discussion
Investigation of the variations of biological sounds is an essential task in evaluating the behaviour of calling 
animals on the basis of acoustic recordings13. In this study, we demonstrated that the PC-NMF is useful for 
separating a biological chorus from a long-term spectrogram containing multiple sound sources, including envi-
ronmental and anthropogenic noises. The PC-NMF acts as an automatic denoising algorithm, which improves 
the investigation of the occurrence of calling animals and the structural change of animal vocalizations in 
long-duration recordings.

Figure 1.  Simulation spectrogram used in this study. (a) The combined data of three types of biological sounds; 
(b) the combined data of two different types of noises; (c) a mixture of the data from (a) and (b).
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Although our simulation analysis indicated that the performance of PC-NMF was not as robust as that of 
the supervised NMF, the PC-NMF still provided a solution to enhance biological choruses without any training 
data. The preparation of training data is an important issue in the long-term and large-scale acoustic monitor-
ing of biodiversity, because it is very difficult to collect sufficient training data with good recording quality. The 
other unsupervised spectral restoration approaches, such as the MLSA, MAPA, and GMAPA spectral restoration 
methods, estimate the gain function in the spectral domain on the basis of probabilistic distribution models of the 
acoustic signal and noise20–23. However, the spectral restoration methods cannot identify different types of noise 
in long-term field recordings. Although they are efficient in decreasing stationary noise, they are unable to handle 
the transient noise produced by weather events and human activities.

Figure 2.  An example of factorizing a spectrogram by using the PC-NMF. (a) Part of the simulation data; 
(b) spectral basis matrix; (c) encoding matrix. The encoding matrix was transformed (using discrete Fourier 
transform) to obtain (d) the periodicity matrix. The prominent peak and harmonic structures of the first eight 
bases in the periodicity matrix indicate that they represent the bases of a biological chorus.

Figure 3.  The noise reduction performances of different methods. A higher spectral similarity suggests better 
noise reduction performance. The bars represent the mean value of spectral similarity calculated after 20 
repeated measurements.
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There are two primary advantages of the PC-NMF proposed in this study. The first advantage is the 
self-learning ability of PC-NMF, which allows it to decompose a spectrogram into a basis matrix and encoding 
matrix. The encoding matrix provides preliminary information regarding the temporal change of each sound 
source so that the second NMF can be used to group different bases. The second advantage is that PC-NMF can 
provide unsupervised clustering of the basis matrix according to the periodicity measured from the encoding 
matrix. Because of the complexity of animal vocalizations, different biological sounds may display varied spectral 
characteristics, but most of the biological sounds occur with a periodical pattern. Therefore, the periodicity meas-
ured from the encoding matrix can aid in differentiating whether a basis belongs to the biological chorus with 
evident diurnal behaviour or the other noise source without a similar occurrence pattern.

The PC-NMF has been tested in both quiet and noisy environments, and its performance relies on the 
periodicity-based basis clustering. However, all the unsupervised clustering algorithms possess uncertainty, 
owing to the lack of training data. Our observations also suggest that the PC-NMF may not perform well when 
the periodicity of biological sounds in the testing data is not very prominent. The calling of many animals has a 
seasonal pattern, e.g., cicada calls may be recorded only during warm seasons. Therefore, precautions must be 
taken in processing a year-long dataset. The periodicity may be decreased when a biological sound is not recorded 
over the entire year. After the periodicity is reduced, the unsupervised clustering of the basis matrix may not be 
accurate, thus lowering the NR capability of PC-NMF. Therefore, it is recommended to first use PC-NMF for a 
short spectrogram fragment with a prominent biological chorus to confidently obtain the basis matrix for biolog-
ical and non-biological signals. The encoding matrix of the entire dataset can be subsequently analysed by using 
the combined basis matrix collected from different spectrogram fragments. Finally, the biological chorus in a 
long-term dataset can be reconstructed by using the supervised NMF approach.

In addition to enhancing the biological chorus and suppressing noise sources, PC-NMF can also be revised 
so that it can recognize individual sound sources. To achieve this, more features, such as the spectral character-
istic and spectral modulation, should be used in the unsupervised basis clustering. Considering the simulated 
long-term spectrogram (Fig. 1) as an example, there were five sound sources with unique spectral and temporal 
characteristics. During our preliminary analysis, we combined information collected from the encoding matrix, 
modulation of the encoding matrix on the basis of discrete Fourier transform, basis matrix, and modulation 
of the basis matrix during the second stage of PC-NMF to classify the basis matrix into five basis clusters. The 
results indicated that the five sound sources could be effectively separated by PC-NMF in an unsupervised man-
ner (please refer to Supplementary Fig. S3). MATLAB codes of the PC-NMF proposed in this study are provided 

Figure 4.  Results of four noise-suppression methods. Spectrograms of noise reduction results generated with 
(a) GMAPA, (b) MLSA, (c) PC-NMF, and (d) supervised NMF.
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in Supplementary Dataset S1. We encourage researchers to test the performance of PC-NMF using real-world 
data and to develop other extensions of PC-NMF to facilitate the acoustic-based biodiversity monitoring in the 
future.

Conclusions
With the proposed PC-NMF algorithm, biological choruses can be effectively separated from a noisy long-term 
spectrogram without any training data. The source separation technique can then be used as a denoising algorithm 
to enhance the biological choruses. A simple index, such as the intensity and complexity of acoustic data, may 
describe the dynamics of calling animals with less bias and without the need to expend explicit effort to design 
detectors and classifiers. Therefore, the passive acoustic monitoring of calling animals is possible even in noisy envi-
ronments, such as a remote island with strong environmental noise or an urban park with noticeable anthropogenic 
noise. In addition to the enhancement of biological choruses, the environmental noise and anthropogenic noise 
separated by the PC-NMF may also be considered as indicators of habitat quality and human activities. In the future, 
the interactions among habitat, animal behaviour, and human disturbance can be investigated through long-term 
acoustic monitoring and the separation of environmental noise, biological sounds, and anthropogenic noise.

Figure 5.  Spectrograms and normalized intensities of underwater recordings collected at the Waisanding 
Sandbar. The graph shows a comparison between (a,b) the original data and (c,d) the analysis results using the 
MLSA method and (e,f) the PC-NMF.

Figure 6.  Spectrograms and normalized intensities of underwater recordings collected at the Xinhuwei River 
Estuary. The graph shows a comparison between (a,b) the original data and (c,d) the analysis results using the 
MLSA method and (e,f) the PC-NMF.
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Methods
In this study, long-term spectrograms from long-duration recordings were used as the input data to separate dif-
ferent sound sources and suppress noise components from the signals of interest. The use of a spectrogram is an 
efficient way to visualize acoustic data in the frequency and time domains. However, it is impractical to visualize 
a large amount of acoustic data by using a spectrogram based on the short-time Fourier transform. Instead, the 
mean or median power spectrum can be measured as a representation of each recording file, and the variation 
across multiple recording files can then be investigated30. In this study, we primarily used a median power spec-
trum to demonstrate the application of PC-NMF. With a long-term spectrogram, a biological chorus, which 
occurs periodically, can be easily observed31. Below, we describe the methodology of using PC-NMF to separate 
biological sounds with strong periodicity from a long-term spectrogram.

Non-negative matrix factorization.  NMF is a self-learning algorithm that learns parts-based representa-
tion from a non-negative matrix27, 28. Although a spectrogram may be negative if the acoustic data are not cali-
brated on the basis of the sensitivity of the microphone or hydrophone used during the spectral analysis, it can 
still be transformed into a non-negative matrix via a simple linear transformation. Through iteration of the update 
procedures, NMF determines an approximate factorization of the non-negative matrix (V), on the basis of the 
other two non-negative matrices, W and H27.

∑≈ =
=

V WH W H( )
(1)ij ij

a

r

ia aj
1

where Vij is the ij-th component of V (matrix that contains multiple sound sources) and Wia and Haj are the ia-th 
component of W (the basis matrix) and the ai-th component of H (the encoding matrix), respectively. The basis 
matrix can be considered the building block for reconstructing V, and the encoding matrix describes the strength 
of each building block. Through NMF, each vector in V can be modelled by W and the corresponding H.

The constraint of a non-negative matrix assumes that the data are a combination of multiple sources, thus 
reflecting the additive nature of sounds in nature environments. This constraint makes NMF an effective method 
for finding a meaningful approximation of the basis matrix for different sound sources27. Each basis often corre-
sponds to the spectral features of a sound source or at least part of a sound source. In contrast, H can be used to 
indicate the relationship between each data vector and each basis if a sparseness constraint is incorporated during 
the matrix factorization32. Therefore, the NMF has also been used in the automatic transcription of polyphonic 
music or event clustering33, 34.

Non-negative matrix factorization-based noise reduction.  The noise reduction of supervised NMF 
consists of two phases: offline and online. In the offline phase, users must prepare training data for different sound 
sources to obtain their basis matrices. In the example of Fig. 7a, two basis matrices for biological sound (Wbio) and 
noise (Wnoise) are modelled individually. After the basis matrices are obtained for the biological sound and noise, 

Figure 7.  Analysis procedures of NMF-based noise reduction. (a) Supervised NMF is composed of an offline 
phase and online phase. (b) PC-NMF is composed of two stages of NMF and one reconstruction stage.
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a new encoding matrix (Hmix) can be trained for a noisy recording, on the basis of the combined basis matrix 
(Wmix) in the online phase. Then, the biological sound can be separated from the noise by multiplying Wbio and 
the associated Hbio.

In PC-NMF, there are no training data available for preparing the basis matrices. A basis matrix Wmix and an 
encoding matrix Hmix are directly obtained from a noisy recording. The critical function of PC-NMF is to pre-
cisely separate Wbio and Wnoise from Wmix without any prior knowledge of the two sound sources. Figure 7b shows 
the procedures of the PC-NMF proposed in this study, which include three stages: the first stage decomposes the 
input spectrogram into a basis matrix (Wmix) and an encoding matrix (Hmix). The second stage extracts a perio-
dicity matrix P by applying periodicity analysis to Hmix:

=P F H( ) (2)PA mix

where P is the periodicity matrix, which carries the periodicity information of the mixed data (as shown in 
Fig. 2d), and FPA(·) denotes the periodicity analysis function. In this study, we used the discrete Fourier transform.

On the basis of the periodicity matrix, the bases in Hmix can be separated without supervision into two clusters 
by using the sparse NMF clustering method32, 34 as follows
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where λ represents the sparsity penalty factor, ||·||1 represents the L1-norm, and d(·) is a distance measure. On the 
basis of the largest score within the encoding matrix, Hp, of the transposed periodicity matrix, PT, the clustering 
assignment of Hmix can be determined. Finally, Wmix is separated into biological and non-biological basis clus-
ters according to the clustering assignment of Hmix. The basis cluster with stronger periodicity is considered the 
essential component to reconstruct the biological chorus from field recordings. However, the basis cluster with 
weaker periodicity is considered to be associated with environmental or anthropogenic noise. In the third stage, 
the separated Wbio and Wnoise with their corresponding encoding components in Hmix are then used to reconstruct 
the biological choruses and noise signals.

Performance evaluation of noise reduction.  The performance of PC-NMF was evaluated by using one 
simulated long-term spectrogram and four real-world datasets. The simulated long-term spectrogram was com-
posed of five sources, including three biological sounds, one low-frequency noise, and one broadband noise 
(Fig. 1). The three biological sounds occupied different frequency ranges: low-frequency, middle-frequency, and 
high-frequency. All three types of biological sound occurred with a strong periodical pattern but appeared in 
different time periods to simulate the diurnal behaviour of various calling animals. The low-frequency noise 
was simulated as the environmental noise, which occurred in a stationary pattern. Finally, the broadband 
noise was simulated as a transient noise event, which masked the biological sounds recorded from the low- to 
middle-frequency ranges.

By using the simulated long-term spectrogram, we compared the separation performance between the super-
vised NMF, PC-NMF, and conventional spectral restoration methods. The evaluation was measured on the basis 
of the spectral similarity, r, the mean of correlations between each vector of the original spectrogram (O) and 
separated spectrogram (V):

=
∑ = ( )

r
Corr O V

n

,
(4)

j
n

j j1

where Corr(·) denotes the correlation function and Oj and Vj are the j-th components of O and V, respectively. 
The spectral similarity is a value between −1 and 1; higher similarity suggests that the separated data have a better 
correlation with the ground truth. In contrast, a poor separation results in a spectral similarity lower than or close 
to 0.

Application of PC-NMF to real-world data.  In addition to the simulated spectrogram, long-duration 
recordings collected in different marine and terrestrial environments were also used in this study to test the 
performance of PC-NMF. Underwater recordings were acquired with SM2M submersible recorders (Wildlife 
Acoustics Inc., Maynard, MA) at two locations. The first recording location was of the shallow waters near the 
Waisanding Sandbar in western Taiwan, where the water depth ranged from 2 to 5 m. The Waisanding Sandbar is 
a relatively pristine environment with a small number of fishing boats that pass by each day. The other recording 
location was the Xinhuwei River Estuary, also in western Taiwan, where the water depth ranged from 8 to 12 m. 
This recording location was close to an industrial harbour, and the underwater environment was relatively noisy, 
owing to the operation of several petrochemical factories and frequent cargo shipping.

Terrestrial recordings were made by using SM2+ and SM4 acoustic recorders (Wildlife Acoustics Inc., 
Maynard, MA) at two locations. The first recording location was Lienhuachih, a subtropical, evergreen, 
broad-leaved forest located in Nantou County in central Taiwan. The altitude of the recording location was 
approximately 800 m. Lienhuachih is a research centre of forestry ecology. Only a few researchers at a time visit 
the recording location. The second recording location was the Guandu Nature Park, a protected wetland located 
in the northwestern part of Taipei City, which is the largest city in Taiwan. Although the Guandu Nature Park is 
a protected wetland, there is one main road passing through its northern boundary. In addition, there is also a 
gravel plant nearby; thus, the background sound at the Guandu Nature Park is mostly dominated by anthropo-
genic noise.
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